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Oscillating Wings and Bodies with Flexure
in Supersonic Flow

D. D. Liu,* P. Garcia-Fogeda,t and P. C. Ghent
Arizona State University, Tempe, Arizona

The development of the Harmonic Gradient Method (HGM) and the Harmonic Potential Panel (HPP)
method for nonplanar wings and bodies in unsteady supersonic flow is presented. They are proved to be accurate
and versatile tools for computations of unsteady aerodynamics. According to a consistent formulation, the bases
of both methods are now unified. Owing to the Harmonic Potential model, the optimal number of panels can
be achieved without loss of computational accuracy, and, yet, it is least affected by the given Mach number and
reduced frequency. Moreover, these methods are completely general in terms of input oscillatory frequencies,
mode shapes, and body or planform geometries. To validate the HGM/HPP computer codes, various computed
results are compared with several known cases. These results demonstrate that the computer codes are attractive
in their efficiency and cost-effectiveness for aeroelastic analyses, which suggests immediate industrial
applications.

Introduction

WITH the advent of supersonic aircraft and modern
launch vehicles, there exists a need for an accurate

airload prediction method for aeroelastic design analysis.
While current methodology for interfering lifting surfaces in
the subsonic regime is better established because of the devel-
opment of the Doublet Lattice Method,1 an equally effective
supersonic method has been lacking for several decades. Many
attempts have been made in recent years for development of
such an effective method for the treatment of interfering
configurations (e.g., Refs. 2-6). Most of the investigators
followed Jones and Appa's Potential Gradient Method and
modified it further. By contrast, the Harmonic Gradient
Method,5 (HGM) developed in 1983, encompasses a general-
ized formulation for nonplanar lifting surfaces, and, with
that, it also achieves the requirements of computational
accuracy and cost effectiveness. Among these attempts, the
HGM appears to be one of the most promising methods to
date. In fact, since 1983, several aircraft industries have
already adopted the HGM for supersonic aeroelastic applica-
tions. To continue the development of the HGM, our current
efforts have been engaged in the generalization of this method
for axisymmetric bodies with flexure,7'8 with a view towards a
comprehensive program for computations of body-wing aero-
dynamics. In this paper, developments of the HGM and the
Harmonic Potential Panel method (HPP) in the problem areas
for wings and bodies will be addressed.

The essence of the HGM and the HPP method lies in the
introduction of the Harmonic Potential (HP) model. With this
model, substantial savings in the wing panel numbers can be
achieved without the loss of computation accuracy. Further-
more, both HGM and the HPP codes are completely general
in terms of the input wing/body geometry, mode-shapes and
reduced frequencies. The ease of application of these codes is
comparable to that of the Doublet Lattice Code or the
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USSAERO Code.9 With these features, both codes combined
can be attractive in that they can perform cost-effective
analyses for complex aircraft configurations.

Meanwhile, the confidence level of these program codes
depends largely on the results of validation. For this reason,
various computed results of wings and bodies will be presented
for verification with several known cases.

General Formulation
Let a = 0 represent the wing formulation and o = 1 the

body. The perturbed potential integral can be written in
general as

(D

where

L \ - ] = and/, [ • ] = [ • ]dx

F0 and F{ are the doublet strengths for the wing and the body,
respectively. The kernel function reads

cos-
H(x - R -e — (2)

where

R =

M& is the freestream Mach number /32 = M£ - 1, and k is the
reduced frequency.

On the surfaces of the wing and along the body axis, the
doublet strengths of each panel can be expressed in terms of
aai, which can be obtained by solving the flow tangency
equation on the panel surfaces,

D; (3)

where AaiJ represents the aerodynamic influence coefficient of
they-th panel to the /-th control point. DhaJ/Dt represents the
down wash, in which haj is the displacement of they-th panel.

The unsteady pressure coefficients are

n
P = -2\ — + ik\ </>o(Wo>*o) e (4a)
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for the wing and

cos (4b)

for the body where cpQ is the mean-flow pressure and Acp
represents the unsteady pressure due to a small amplitude S0.
It should be noted that aoi for the body depends on the
mean-flow solution due to the nonvanishing of the body
thickness. Consequently, Acp should also depend on the mean-
flow pressure CPQ. Since the wing thickness is approximated by
a lifting surface, the aai and the unsteady pressure cp in Eqs.
(3) and (4a) are decoupled from the mean-flow solution.

Steady-Flow Results
Swept Rectangular Wing

With the subsonic leading and trailing edges, the planform
in Fig. 1 is an interesting case for result verifications. An exact
solution obtained by Cohen10 clearly indicates the wave-wave
interaction feature of the problem (Fig. 2). Among others,
previous attempts by Chipman11 using improved Mach Box
method, and by Ueda and Do well4 using Doublet Point
method, have shown smearing of data around wave-wave
finite discontinuities. To capture these discontinuities, it is
essential to create irregular panels along the Mach wave cuts.
One type of the panel arrangements used by HGM code are
shown in Fig. Ib. With 196 panels, lifting pressures are
computed at the spanwise locations of 48 and 72% as shown
in Fig. 2a and 2b. In so doing, both weak and strong wave
discontinuities are properly captured in regions inboard and
outboard of the tip Mach line, as well prescribed by Cohen's
exact results.

Nonlinear Solutions for Bodies
Results of linear and nonlinear versions of HPP Code are

presented in Fig. 3 and 4. Based on Van Dyke's iterative
procedure12 the HPP nonlinear code has been developed
recently8 to account for the nonlinear body thickness effects.
It is the first time that the panel method, using the technique
of particular solutions, is employed to treat the nonlinear
problem without involving the field point computations. In
Fig. 3, HPP results (linear) and HPP nonlinear results are
compared with those computed by USSAERO Code and by
exact characteristics13 for a 26% thick ogive body at
Ma, = 2.0. The HPP nonlinear results compare very well with
those computed by the method of exact characteristics. It is
seen that the nonlinear effect due to thickness is substantial
from apex to the midbody. Next, the nonlinear iterative
scheme is applied to a 16% thick ogive-cylinder-boattail body
at MOO = 3.0 and placed at an angle of attack <x0 = 3.2 deg.
Again, very good correlations are found with the computed
results of the Parabolized Navier-Stokes (PNS) Code and the
Euler Code.14 Considerable deviations between the linear and
the nonlinear results are again observed particularly on the
windward side of the ogive part. It is believed that as long as
the flow remains attached, the present HPP nonlinear method
should yield results in favorable agreement with those ob-
tained by computational methods in the supersonic Mach
number range.

Stability Derivatives
Delta Wing

For the panel arrangement shown in Fig. 5, the large aspect
ratio of each panel element in the proximity of wing tips of a
45 deg swept delta wing would have ordinarily caused
numerical errors. To show that such is not the case for the
HGM, we compare present HGM results with Mile's exact
solution15 in terms of damping-in-pitch lift and moment
coefficients. It is seen that all are in very good agreement with
the exact results. This implies that the HGM scheme used is a
robust one in that the computed result is unaffected by the
assigned panel shapes and sizes.

Fig. la Planform scheme
for a swept rectangular wing.

Fig. Ib Paneling scheme
for a swept rectangular wing.

Ogive-Cylinder Body
It can be seen that in Fig. 6 the damping-in-pitch moments

as computed by the present HPP methods are in fair
agreement with the measured data16 for a 20% thick ogive-
cylinder body throughout the Mach number range. The
computed results of Ref. 17 (SPINNER Code) and Ref. 18
show discrepancies with measured data; little dependency on
Mach number was found in these analyses. By contrast, strong
Mach number dependency is shown in the results of the HPP
Code. However, no appreciable difference is found between
the HPP linear and nonlinear results for this case.

Harmonic Potential Model
To achieve computation accuracy and effectiveness for

wings or bodies in high-frequency oscillations, it is essential to
render the Doublet solution and its convective gradient
uniformly valid throughout the frequency domain/This is to
say that the Doublet strength in each panel can be maintained
spatially harmonic. In so doing, the element size is made
automatically compatible to the wave number generated along
the chord. Hence, the solution obtained can be least affected
by the panel length and the input frequency.

In terms of Eq.(3), the HP model amounts to representing
the unknown strengths aai by

Figure 7 shows the doublet potential A0 (or F0 asnd FJ
behaves according to Eq. (5). As a result, as few as 30 panels
are needed for a single wing planform using regular paneling
scheme and 20 panels for a single body in actual computa-
tion.5'7 In an IBM 3081 computer, typically only 90 CPU s and
7 CPU s are required, respectively, for computations of
unsteady pressures.

Full-Frequency Domain
With the HP model built in, the HGM and the HPP

methods can handle oscillatory problems in the full frequency
domain effectively. In the high-frequency range, accurate
solutions can be obtained without increasing the number of
panel elements. Figures 8 and 9 present the unsteady pressures
at the root chord section of a high-aspect-ratio rectangular
wing in pitching and in plunging motions, respectively. For
verification, the reduced frequencies "k" selected lie in the



JUNE 1988 BODIES IN SUPERSONIC FLOW 509

2.OO

1.00

PRESENT HGM
COHEN'S EXACT SOL.(REF1

0.00 0.20 0.40 0.60 O.80 1.00

6.00

5.00

4.0O
o.

O

2.00 -

0.00 0.20 0.40 0.60 0.80 I.OO

Fig. 2 Chordwise steady pressure
distribution for swept rectangular
wing at angle of attack.

O.
O

-O- PRESENT HPP NONLINEAR
—— - CHARACTERISTICS EXACT (REF. 13)
——— PRESENT HPP
-••-•• USSAERO (REF.9 )

-.04 -

Fig. 3 Mean flow pressures for a parabolic-ogive at M& = 2.0 and at
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Fig. 4 Pressure distribution of an ogive-cylinder-boattail body at
Moo = 3.0 and angle of attack «0 = 3.2 deg.

moderate to high range between 0.4 and 2.0 and the Mach
numbers (M^ =1.15 and 1.25) are selected in the lower range.
As the root-chord is" not contaminated by the tip Mach cone,
it can be seen that the HGM results are in good agreement with
several available two-dimensional results of Chadwick-
Platzer19 and of Liu and Pi20 in Fig. 8, and with that of
Jordan21 in Fig. 9. For oscillating bodies, Fig. 10 presents
results in the high-frequency limit. To validate the high-fre-
quency solution of HPP Code, its computed results using 20
panel elements are checked against results calculated based on
the piston theory for a very slender parabolic ogive. The
thickness ratio r = 0.02 is selected according to the require-
ment of rM^k < 1 as imposed by the piston theory. At
MO, = 1.5, it is seen that agreement seems to be very good for

two selected frequencies k = 4.0 and k = 1.5. It is also
interesting to compare the effects of frequency and flow
dimensionality on unsteady pressures. Figure 11 shows com-
parisons of unsteady pressure coefficients for a 5.7 deg cone
and a flat plate pitching about the apex at M^ = 2.0. The HPP
results are compared with the LPP results,20 which are
identical with the HGM results for a rectangular wing at the
root chord. As expected, the unsteady pressure magnitudes for
an oscillating cone are smaller than those of a flat plate at
k = 1.0 and k = 2.0. Similar to the case of steady supersonic
cone and wedge flows, the present finding shows that the cone
in oscillation yields weaker compressions as a result of three
dimensionality of the flow, irrespective of the oscillation
frequency.



510 LIU, GARCIA-FOGEDA, AND CHEN J. AIRCRAFT

3.0

2.5

2.0

' • 5

1.0

0.5

MILES
PRESENT HGM

CLd+c

1.5 2.0 2.5 3.0 3.5

-0.5

-I .0

-1.5

2.0,

Fig. 5 Stability derivatives of a 45 deg delta wing at various Mach
numbers.

— Re '
--- Im

Fig. 7a Modeling of doublet strength: Harmonic Gradient Model
(wing).

M-I.I5
PITCHING AXIS AT THE LEADING EDGE

.CHADWICK-PLATZER(2D)(R ER 1 9)
_LPP METHOD (2D) (R E F. 2 0 )

• • .PRESENT HGM (3D) '

O.I 0.2 0.3 \0.4 0.5 0.6 0.7 0.8 0.9 I.O

Fig. 7b Modeling of doblet strength; Harmonic Pontential Panel
Model (body).

-.55 - •

O
+

O
-.40

• MEASURED DATA (REF. 16)
—O- PRESENT HPP NONLINEAR
—— PRESENT HPP
— - SPINNER CODE (PER 17)
— •- ERICSSON (REF 18)

R(x)«.
R(x)«.l .4SXSI.O XQ".6

iCTU
2.0

M
3.0 3.5

00
Fig. 6 Damping-in-pitch moment coefficient for a parabolic-ogive-
cylinder at various Mach numbers.

ACP

JORDAN (2D) IRE F. 21 1
Im ACp
ReACp.
Im ACp* • • • • •
Re ACp A * A A A A PRESENT HGM (3D)

\ O.I 0.2 ^0.3 OA 05 0.6 0.7 0.8 0.9 I.O
\ / x/c

Fig. 8 Comparison of unsteady pressures with various two-dimen-
sional methods at M*, = 1.15, k = 0.4 and k = 1.2. Pitching axis at the
leading edge.

Oscillating Flexible Bodies

Coordinate Systems
It has been observed that a slender missile is susceptible to

flutter when it is under a combination of short-period rigid
mode and free-free bending mode oscillation during its
supersonic flight phase.22 To analyze such problems requires
the proper selection of the coordinate systems. This question
has been studied in depth by Garcia-Fogeda and Liu.7
Basically, there are three coordinate systems to be considered:
the wind-fixed, the body-fixed, and the pseudo-body-fixed

(known as the pseudo-wind-fixed in Ref. 7; see Fig. 12). The
first two systems have been subject to some controversy in the
past.23'26 It was found in Ref. 7 that, if ill formulated, the
wind-fixed system will yield solutions that are generally
singular at the body apex and at the body slope discontinu-
ities. On the other hand, based on Van Dyke's first-order
theory, a generalization to unsteady flow in the body-fixed
system can be readily formulated to facilitate present studies.
The pseudo-body-fixed coordinate system is a hybrid approxi-
mation between the first two systems. Its formulation is
physically correct but not rigorous.
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Bending Oscillations
In Fig. 13, computed HPP results for an elastic cone-cylin-

der body, oscillating in first bending mode, were compared
with the aerodynamic damping data measured by Hanson and
Doggett27 for verification. The damping reduced frequency
lies between 1.12 to 1.6, corresponding to M^ = 3.0 to 1.5. It
is seen that the present results establish close trends to the
measured data. By contrast, all quasisteady theories12'33'34

yield much inferior predictions. It should be mentioned that
equally close trends to the measured data were also predicted
for the case of second-order, bending-mode oscillations.

Divergence and Flutter
The main application of the HGM and the HPP Codes lies

in aeroelastic analyses such as the predictions of divergence
and flutter boundaries. To verify these boundaries with
measured data for wing planforms is difficult, as the latter are
mostly kept out of the public domain. However, it should be
noted that the HGM Code is presently used by several aircraft
industries for flutter clearance purposes, as well as flutter
predictions in their aeroelastic optimization program. Also,
limited amount of flutter data is found to exist for bodies.

In Figs. 14 and 15, an oscillating cone of semiangle 7.5 deg
in rigid mode at wind-off frequency ratio of co/y/o^ = 1.8 is
studied for divergence and flutter. The present HPP (linear)
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.

Fig. 9 Comparison of unsteady pressures at the root of a plunging
high aspect ratio rectangular wing with Jordan's two-dimensional
method at A/* = 1.25 and k = 2.0.

method and the HPP nonlinear method are used to compute
the divergence and flutter boundaries. Here, the HPP
nonlinear code is referred to a scheme using the nonlinear
mean-flow solutions for unsteady flow computations (see Ref.
8). It is seen that consistent improvement in trend is obtained
for the nonlinear results over the linear ones in comparison
with the measured data of Sewall, Hess and Watkins,28

whereas two of the quasisteady methods35'36 fail to predict
such a trend. However, the predicted boundaries become less
conservative in the order of slender-body, the HPP-linear, and
the HPP-nonlinear results. Little Mach number dependency is
shown for the divergence boundary as predicted by the HPP
nonlinear code up to MM = 5.0. In Fig. 15, it is seen that
overall trends of the predicted flutter speeds are comparable to
those measured. Since the cone is a slender one, the predicted
flutter speeds by the linear and the nonlinear methods merge
in the low Mach number range as expected. A similar trend
can be observed in the pressure distributions for the mean-
flow cases.12 It should be noted that, for thicker bodies, the
linear and nonlinear results are expected to deviate from each
other, as indicated by Van Dyke for the mean-flow cases.
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X

Fig. 11 Comparison of the in-phase and out-of-phase pressure
coefficients at Moo = 2.0 for a 5.7 deg cone and a flat plate pitching at
the apex.
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Fig. 12 Various coordinate systems for oscillating bodies.
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Fig. 15 Flutter speed boundaries vs Mach number for a 7.5 deg cone.

Other Configurations
Saturn Launch Vehicle

In Fig. 16, aerodynamic damping of the Saturn SA-1
launch vehicle is presented. To compare with Hanson and
Doggett's measured data,29 the free-free first bending mode
and damping frequencies as determined by the experiment are
used as the inputs for the present HPP Code. The natural
frequency for the actual vehicle is 2.8 Hz; however, for wind
tunnel experiments, the model natural frequency is 153 Hz due
to the necessary scale-down in size. Consequently, the reduced
frequency lies between 1.4 to 2.53 for Mach number range
between 3.0 to 1.2, respectively. Thus, the reduced frequency
range for the model study is of order unity. This justifies the
necessity of a general method, such as the present HPP
method that is valid in the full-frequency domain. Good
agreements are seen between present results and the measured
data. To model this complex configuration, less than 100
panels are used with the given frequency range. Only 30 s CPU
time on an IBM 3081 computer were needed for computing the
aerodynamic damping coefficient for one freestream Mach
number.

• EXPERIMENTAL DATA OF NLR (REF.30)
— PRESENT HGM

MOO = '-336

K = . I98

2 .4 .6 .8 1.0 • A .4 .6 .8 1.0

Fig. 17 Comparison of computed unsteady pressure on a Northrop
F-5 wing with experimental data of NLR: 1 Y/B = 18%; sect. 3
Y/B = 51.2%; sect. 7 Y/B = 87.5°7o.
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Northrop F-5 Wing
Tijdeman et al.30 at NLR have performed a series of experi-

ments on a pitching F-5 wing throughout the whole transonic
range. We select the highest Mach number case in this series
(Mw - 1.336) for the computation example presented in Fig.
17. With the pitching axis located at 50% of the root chord,
the wing is pitching at a frequency of k = 0.198. Sections 1, 3,
and 7 are selected, which are located at 18%, 51.2% and
87.5% of the semispan, respectively.

The HGM code computes this case without the scheme of
the Mach wave cut. Ten chordwise and 12 span wise panels are
uniformly distributed on the wing surface. It is seen that the
correlations between the computed results and the measured
data are fair. The reason for this is that physically there exists
strong influence of the nonlinear effect due to a detached
shock wave near the leading edge, whereas the HGM is a linear
method. Also observed is the oscillatory feature of the
measured data. The cause of this feature in the measured data
is not totally clear. We believe that the oscillatory pressure in
this flow regime could in turn affect the flutter results to a
certain extent. Investigation of this problem requires the
careful study of the nonlinear transonic/supersonic flow at the
near shock-attachment or detachment conditions. Such a
study is currently in progress.

Fig. 18 Nonplanar wing-tail configuration showing notations
(OB = 2V3, PF = V3/2, AC = 4 and EG = 2).

Nonplanar Wings
Computations were carried out for a wing and a tailplane,

both with delta planforms in tandem configuration, as shown
in Fig. 18. Two coplanar cases and three nonplanar cases are
considered according to Woodcock and York.31 The fixed
geometric parameters for this arrangement are

root chords: OB = 2V3 and PF = V3/2
wing spans: AC = 4 and EG = 2,

whereas the varied parameters are d, the distance between the
wing and the tail measured along the A: -axis from one trailing
edge to the other, and h, the height between the mean planes
of the wing and the tail. Case 2 and case 5 are two special
cases. In case 2, the coplanar wing and tail join at point B (also
now point P); in case 5, no interference occurs between the
two surfaces.

Four modes were considered:
mode 1: both wing and tail in plunging motion,
mode 2: both wing and tail in pitching motion,
mode 3: the tail alone in plunging motion, and
mode 4: the tail alone in pitching motion,

while the pitch axis remains fixed at two thirds of the wing
root chord for all modes.

The generalized forces should read

+ ik

where L is the reference chord length, S is the reference span
length and k the reduced frequency, and they are set to V5", 2,
and 0.01, respectively, for the present cases.

Only the out-of-phase part of the generalized forces, Qu , is
presented in Tables 1 and 2. Computed results of HGM are
compared with those by Woodcock and York using the Box
Collocation method and by an approximate method of Martin
et al.32 Close agreement with Woodcock's results are found
for the coplanar cases. For the nonplanar cases, some
deviations are found in the values of Q j 2 , Q^ i > Gs i > and Q4 j .

It should be noted that the present HGM adopts a total of
125 panels, 100 for the wing and 25 for the tail, whereas
Woodcock uses 350 boxes. In our earlier work,5 as few as 50
panels were used to compute for an AGARD Wing-Tail-Fin
combination. Little difference was found in the generalized
forces between using 100 panels and 50 panels to represent the
cases of wing-tail and fin-tail interferences.

Table 1 Out-of-phase generalized forces for
coplanar tandem-wing interference, Mm - 1.44, k = 0.01.

Table 2 Out-of-phase generalized forces for
nonplanar tandem-wing interference, M<» = 1.44, k = 0.01.

Qu

11
12
13
14
21
22
23
24
31
32
33
34
41
42
43
44

Case
HGM

3.073
1.439
0.489
0.997
0.345
4.102
1.055
2.154
0.151
1.646
0.489
0.997
0.324
3.562
1.055
2.154

1 d = 2.866
Woodcock31

2.951
1.473
0.469
0.925
0.326
4.142
1.016
2.007
0.149
1.635
0.469
0.925
0.321
3.553
1.016
2.007

h =0
Martin32

2.99
1.43
- -
- -
0.32
4.40
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -

Case
HGM

3.160
0.348
0.489
0.432
0.259
1.104
0.490
0.437
0.238
0.555
0.489
0.432
0.238
0.563
0.490
0.437

2 d = 0.866
Woodcock31

2.88
0.20
0.477
0.387
0.110
0.970
0.483
0.395
0.07
0.37
0.477
0.387
0.09
0.40
0.483
0.395

h =0
Martin32

3.06
0.37
- -
- -
0.21
1.70
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -

Case

Qu
11
12
13
14
21
22
23
24
31
32
33
34
41
42
43
44

3 d = 0.866 h = 0.5 Case 4 d = 0.866 h = 1.0 Case 5d = 0.866 h = 5.0

HGM Woodcock31 HGM Woodcock31 HGM Woodcock31

3.161
0.264
0.489
0.432
0.272
1.026
0.490
0.437
0.239
0.471
0.489
0.432
0.250
0.485
0.490
0.437

2.965
0.170
0.477
0.387
0.171
0.934
0.483
0.395
0.148
0.343
0.477
0.387
0.155
0.358
0.483
0.395

3,065
0.269
0.489
0.432
0.164
1.018
0.490
0.437
0.142
0.476
0.489
0.432
0.112
0.478
0.490
0.437

3.028
0.141
0.477
0.387
0.240
0.896
0.483
0.395
0.222
0.315
0.477
0.387
0.224
0.319
0.483
0.395

3.412
0.225
0.489
0.432
0.512
0.977
0.490
0.437
0.489
0.432
0.489
0.432
0.490
0.437
0.490
0.437

3.282
0.214
0.477
0.387
0.499
0.971
0.483
0.395
0.477
0.387
0.477
0.387
0.483
0.395
0.483
0.395
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Conclusions
It has been shown that the present method has the following

advantage over the existing unsteady supersonic methods:
1) The present method formulation is consistently based on

the Harmonic Potential Model. It is general in the frequency
domain and for arbitrary input mode shapes.

2) The present method is general for computing nonplanar
or coplanar wing planforms, as well as for axisym-
metric bodies with any given body shape, including slope
discontinuities.

3) Due to the Harmonic Potential Model, the required
number of panels is least affected by the given Mach number
and reduced frequencies, and yet without the loss of computa-
tional accuracy.

4) Both HGM and HPP Codes are computationally efficient
in terms of computing time. The ease of application of these
codes is comparable to that of the subsonic Doublet Lattice
Code. Therefore, we believe that a comprehensive, three-di-
mensional, unsteady, supersonic method for body-wing com-
binations is nearly in hand. With the above features, properly
combining both codes into one can provide aircraft industries
with a cost-effective tool in performing supersonic aeroelastic
analyses for a complex aircraft configuration. We are pres-
ently continuing our effort towards this goal.
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